
~ Pergamon 
0021-8928(95)00050-X 

1. ApI~ Maths Mechs, Vol. 59, No. 3, pp. 425-437, 1995 
Copyright © 1995 Elsevier Science Ltd 

Printed in Great Britain. All fights reserved 
0021--8928/95 $24.00+0.00 

APPU[CATION OF ZERO-RADIUS POTENTIALS TO 
PROBLEMS OF DIFFRACTION BY SMALL 

INHOMOGENEITIES IN ELASTIC PLATESt 

I. V. A N D R O N O V  

St Petersburg 

(Received 8 June 1993) 

A procedure for constructing explicitly solvable models of small inhomogeneities in boundary-contact acoustic problems is 
presented. The procedure is based on the theory of self-adjoint extensions of symmetric operators and enables the diffraction 
problem to be reduced to two simpler problems. The first problem is for a totally rigid plate and the second is for an isolated 
plate. In a number of cases the asymptotic analysis of these problems enables one to construct a model for inhomogeneity in 
the original boundary-contact problem. This procedure is used to investigate the diffraction of a plane acoustic wave at a plate 
with a circular aperture of small radius. The problem of diffraction of a plane wave by the aperture in a completely rigid plate 
and the problem of diJ~action of a bending wave by the aperture in an isolated plate can be solved by separation of variables 
in ellipsoidal and pola]: coordinates, respectively. The asymptotic behaviour of the field for the original problem in the far zone 
is obtained. 

Zero-radius potenlLials were introduced by Fermi in the 1930s in order to investigate quantum-mechanical 
systems. This amounted to specifying "boundary" conditions on the wave function ¥ at a point: (rw) -1 
O(rv)/b I r--,0 ~ ct, where r is the distance from the centre of a "potential well", i.e. the point where the 
zero-radius potential is located, and a is a real number. It was then shown [1] that from a mathematical 
point of view the setting of a logarithmic derivative defines a self-adjoint extension of some symmetric 
operator. At the present time zero-radius potentials are frequently used and have become classical 
in quantum mechanics [2], and also when modelling narrow slits in rigid screens and open resonators 
[3]. 

From a physica][ point of view, an approach based on the application of operator extension theory 
to the above range of problems enables one to use the smallness of the inhomogeneity to simpli~ the 
problem even as o:ae is formulating it. In the same way in which the plate in boundary-contact problems 
is modelled by an infinitely thin plane, and stiffening ribs by infinitely thin lines (qr points in the case 
of two dimensions), plate inhomogeneities are replaced by point scatterers of special form. To fix the 
conditions at these scatterers the idea of zero-radius potentials is also employed. The fundamental 
problem that appears in self-adjoint operator extension theory is the choice of extension parameters 
that adequately model the object. In the procedure given below this choice is made by splitting the 
original problem into simpler problems. 

Analysis of pub]tications on acoustic boundary-contact problems easily establishes the relation with 
the associated problems for an isolated, dry structure. (Below these will be called vacuum problems.) 
Indeed, the extraction of objects corresponding to vacuum problems is performed by the regulariza- 
tion of the integrals and series that formally appear in the application of Fourier integrals and seriesAt 
and in particular t:he vacuum objects form the singular terms in the integral equations [4] to which the 
diffraction problems reduce. 

In terms of extension theory this relation between the vacuum and complete problems leads to 
the possibility of constructing zero-radius potentials from two components. One corresponds to the 
vacuum problem and describes the influence of the inhomogeneity through its effect on the 
bending displacements of the plate, and the second corresponds to the diffraction problem for a 
completely rigid screen and describes the direct effect of the inhomogeneity on the acoustic pressure. 
Hence, to choose the extension parameters in the complete problem one has to fred extension parameters 
for operators corresponding to the vacuum problem and to the rigid screen problem, and to this end 
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one must construct the asymptotic forms of the associated simplified problems. After the extension para- 
meters for the components have been chosen, the two resulting models are united by extension theory 
methods into a model of a point scatterer in the original boundary-contact problem. 

The model described is used to model a circular aperture of small radius in a plate and the diffraction 
problem is studied. It is clear that in this problem the variables cannot be separated, whereas at the 
same time in the diffraction problems for the isolated and rigid plates that are investigated in order to 
obtain the parameters for the potential components, this separation of variables is carried out in 
ellipsoidal [5] and polar coordinates, respectively. 

1. F O R M U L A T I O N  OF T H E  D I F F R A C T I O N  P R O B L E M  

The problem of the diffraction of an acoustic wave by a thin elastic plate with an inhomogeneity, 
occupying an arbitrary domain l), consists in finding a solution of the Helraholtz equation 

(A + k 2) u(x, y, z) = 0, R3+M'~ (1.1) 

with boundary conditions 

(A2-k4)~(x, y)+vu(x,  y, 0)=0,  ~(x, y ) = ~ u / ~ Z l z =  0 , R2 \(~'~t"~R 2) (1.2) 

and certain conditions on u(x , y ,  z )  at Off and on ~(x ,y )  at Off n R 2. Here u is the acoustic pressure and 
is a function proportional to the bending displacement of the plate. The conditions at the 

inhomogeneity fix the mechanical and acoustical conditions and should satisfy the requirements of 
the existence and uniqueness theorem for solving the scattering problem. These conditions must of 
necessity be supplemented by the Meixmer conditions and analogous conditions [6] for bending 
displacements. 

The wave process within the system is excited by some incident wave. To fix our ideas we shall assume 
that the latter is a plane acoustic wave 

u I = exp(i kr cosO0cosq~- i kz sinO0) (1.3) 

The total field in the problem can be represented as the sum of three terms: the incident field U i, a 
field u r that is reflected by the homogeneous plate, and a field uS that is scattered by the inhomogeneity 
(so that u = u i + u r + uS). T h e  u r and u s fields must satisfy the radiation condition. 

Since the reflected field u r is easily found 

u' = R(Oo)exp(i kr cosOocost p + i kz sinO0) 

R(tp) = ( ik(k  4 cos 4 O - k 4 )sin O - v) ( ik(k  4 COS 4 1~ - -  k 4)sin 0 + v) -I 

(1.4) 

the problem amounts to finding the field uS. Below we shall construct the asy~_ ptotic form of the scattered 
2 1/2 oo fields in the far zone, i.e. the asymptotic forms when R = (x 2 + e + z 2) ~ and diam 

(n)  --} o. 

2. THE O P E R A T O R  S T R U C T U R E  IN THE B O U N D A R Y - C O N T A C T  
P R O B L E M  

The construction of point models for problems of diffraction by a thin elastic plate is based on 
extension theory for symmetric operators and requires one to change to an operator formulation of 
the problem. To this end we consider two spaces: an external space Lext = L2(R~) and an internal space 
Lin t = L2(R2). The first of these is the space of acoustic pressures (u(x,  y ,  z )  ~ Lext) and the second is 
the space of bending plate displacements (~(x,y) E Lint). In the external space we specify the operator 
Hext = A with domain of definition D(Hext) = I~2 ,~R '+)  (wherethe subscript N denotes the Neumann 

2 condition at z = 0), and in the internal space the operator Hin t = A with domain of definition D(Hint) 
= I~2 = 1~2(R2). The spectral problem for these operators corresponds to the problem of the diffraction 
of acoustic waves by a completely rigid plate and the problem of propagation of flexural waves in an 
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isolated plate (a plate situated in a vacuum), respectively. 
Consider the operator 

  ll  He°t 2°LIl .,  int ,21, 
acting in the space L = Lea ~ Lint and defined for pairs of functions (Uext, Uint) ~- U. The scalar product 
in L is specified to be the sum of the scalar products of the components in the internal and external 
spaces 

(U, V) L = K "-1 (Uex i, aJext) + (Uin t, "Oint) 

The constant !¢ irt (2.1) is introduced in order to equate the spectral parameters of the external and 
internal problems: !¢ = k~k -2. The operator 1(*) acts from Lext into Lin t according to the formula l(uext) 
= 6- -0 .  

It can be shown that the operator K with domain of definitions 

2 3 W24 (~2) ,  Uint D ( k )  = {U: Uex t E W~ (~+) ,  Uin t E = V-I/2~Uext / OZiz=O } 

is appropriate for the problem of diffraction by a homogeneous elastic plate and is self-adjoint. 
Thus the self-adjaint matrix operator for the problem of diffraction by an elastic plate consists of 

two seff-adjoint problems, corresponding to the problems of an absolutely rigid plate and an isolated 
plate. It is obvious that the replacement of these components by operators corresponding to the problems 
of diffraction by inhomogeneities in rigid and isolated plates reduces to the operator problem for 
diffraction by an elastic plate with an inhomogeneity. If instead of the exact diffraction problems one 
uses model potentials of zero radius, then the corresponding matrix operator will obviously model the 
phenomenon of diffraction by an inhomogeneity in an elastic plate. 

All this reduces to the following procedure. One first constrhcts self-adjoint extensions of the operators 
He~t and Hint and chooses parameters for these extensions. One then constructs the extension of 
K and some of the parameters of this extension are identified with the extension parameters of Hex t 
and Hint. 

3. Z E R O - R A D I U S  P O T E N T I A L S  F O R  T H E  E X T E R N A L  C O M P O N E N T  

Zero-radius potentials for the Helmholtz operator in the presence of a totally rigid screen have been 
investigated in detaiJ[ [3]. Hence we shall not repeat all the calculations, and only quote the final formulae 
in the notation adopted here. The solution of the problem of scattering by a potential of zero radius 
satisfies the equation 

(A+k2) u=O, z > 0 ,  r > 0  (3.1) 

the Neumann condition 

3u/bzl~ = 0 = 0, i" > 0 (3.2) 

and some condition at the point (r = 0, z = 0). 
In order to find file condition at the point we consider the asymptotic form of an arbitrary solution 

of (3.1), (3.2) in a n eighbourhood of the origin of coordinates 

u -- c°/(4•R) +jo + o(1) (3.3) 

Then the condition at the point (r = 0, z = 0) is formulated in the form of a relation between the 
coefficients c o and fa 

c o = Aft (3.4) 

The parameterA :in (3.3) takes real values (includingA = ** which denotesf ° = 0). It has been shown 
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[3] that all self-adjoint expansions in L 2 corresponding to the external problem are parametrized by 
condition (3.3). 

In addition to condition (3.3) other methods of describing self-adjoint expansions exist, but this version 
is singled-out by the fact that A in (3.3) depends only on the inhomogeneity and depends neither on 
the incident field nor on the properties of the acoustic medium. In order to choose a parameter A 
corresponding to a specific inhomogeneity it is necessary to describe the asymptotic form of the field 
in the far zone for some model problem. 

4. ZERO-RADIUS POTENTIALS IN THE INTERNAL SPACE 

A biharmonic operator acts in the internal space and its extension theory has been developed in [7]. 
We will consider the operator/-/~int = A2 defined on functions in ~ 0(R2). Here the zero subscript means 
that the functions vanish at the origin of coordinates together with all their x and y derivatives up to 
the second order inclusive. The order of the derivatives, whose values can be fixed at a separate point, 
is governed by the inclusion theorems [8]. It has been established [7] that defect indices of the operator 
/-~i~t are equal to (6, 6), and the defect elements are Green's function 

G(x, y, Ix)=~2 {H(o')(gr)-H(o')(iBr)} (4.1) 

associated with the c?mplex spectral parameter IX4, together with its derivatives. Because the singularity 
of G is of the form rZln r, one can perform at least a double differentiation without leaving L2. Thus 
we have six defect elements G, G~, Gy, G ~  G~y and Gyy. To simplify the formulae we fix the value of 
the spectral parameter as follows: IX = exp(ilt/4). 

The operator (/-/~i,t)* adjoint to/~'mt is defined on functions represented in the form of the expansion 

~(x, y)= ~ c '0 O"+JG(x, y) xn)'~) + 
,+j<3 Ox"OY j +Z(x' y).+i<3 y" b"i n!j! t°(x' y) (4.2) 

Here ~(x, y) belongs to the domain of definition of/-/~int, and the function Z(x,y) is a smooth cut-off 
function such that Z(x, y) = 1 when x 2 + ),2 < 1, Z(x, y) = 0 when x 2 + y2 > 2. The first summation in 
(4.2) forms the singular component ~ of the function ~, and the remaining terms have no singularities 
and form the regular component of ~. The action of the operator (/-Fret)* on ~(x, y) is given by the 
following formula 

0 (Hint)*~(x, y)=A2~r(x, y)-~,.(x, y) (4.3) 

i.e. the operator (Hg-~) * acts on the components as A 2 and on the ~ components as the operator of multi- 
plication by ~t 4. 

The operator Kin t (the scattering operator for flexural waves on a zero-radius potential in an isolated 
plate) is the restriction of (H~int)* to functions from a set D(gint) such that the boundary form I(~, rl) 
= ((n~int)*~, 1"1)-(~ , (/-~int)*l]) vanishes on  D(Kint). It has been shown [7] that 

I(F=, ~1)= Y. (bO(~)aO(rl)-cO(~)6iJ(rl)) (4.4) 
i+j<3 

In order for the right-hand side of (4.4) to vanish it is necessary to specify a linear relation 
between the vectors tin t = {C 00, C 10, C 01, C 20, C 11 , C 02} and hin t = {b 00, b 10, b 01, b2°,b n, b °2} formed by the 
expansion coefficients of (4.2) for ~ and tx 

ci,,t = ti, bint (4.5) 

(where A is an arbitrary Hermitian matrix). To parametrize all self-adjoint extensions of the operator 
I-/°mt in the form (4.5) one has to allow the coefficients of ~, to become infinite, as was done withA in 
(3.4). 

Condition (4.5) isinconvenient in the later procedure of constructing a matrix zero-radius potential 
because the matrix A depends on the incident field and the properties of the plate. To remove this 
dependence we formulate a condition similar to (4.5) for the coefficients of the asymptotic expansion 
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o f  functions in D(gint) 

.00 cl0 C01 C20 
~ = ~-:-'-r21nr 4re r l n r  costp+ 4n r l n r  s in tp+-~ - (21nr+ l+2cos2  tp)+ 

cl I C02 
+---4~: sin q~ cos ~ + ~ (2 In r + 1 + 2 sin 2 <p) + foo _ f lo  r cos tp - f ° t r  sin ~, + 

"'0 02 
f ~  r 2 (4.6) + f " - r 2 c o s 2 ~ p + f l l r 2 c o s t p s i n t p +  sin2 tp + o(r2), r ---~ 0 

2 2 

The coefficients c nj in (4.5) are identical with the corresponding coefficients in (4.2). The vector f~nt = 
{foo, fl0, fOl, f2o, fH,  fo2} obviously differs from b int by the term B(Ix)c int generated by the asymptotically 
singular components, with 

i / (8Ix) 
0 
0 

B = 
g 
0 
g 

0 0 g 0 g 
1 / ( 8 ~ )  - g 0 0 0 0 

0 1 / ( 8 n ) - g  0 0 0 
0 0 3iIx / 64 0 iIx ! 64 
0 0 0 iIx / 32 0 
0 0 iIx / 64 0 3i~t / 64 

g = [In(Ix / 2) + Ye - 1 - in / 4] / (4~) 

where TE is Euler's constant. 
The matrix B is Hermitian for Ix = exp(i~/4) and, consequently, condition (4.5) can be written in the 

form 

c i'' = Af i" (4.7) 

Here the Hermitiian matrix A no longer depends on the incident field and the properties of the plate 
far from the inhomogeneity. 

5. Z E R O - R A D I U S  P O T E N T I A L S  F O R  THE O P E R A T O R  K 

We will restrict the operator K to vector functions in U such that their external component u ~  vanishes 
at the point (0, 0, 0) and their internal component Umt belongs to W24, o(R2), i.e. we make a restriction 
of the external and internal components similar to that in Sections 3 and 4. The defect elements of the 
resulting operator K ° are solutions of the problems 

-(gA + ~,)G°xt (x, y, z) = 8(x)8(y)8(z)  

~fVG°xt(X, y, 0)+(A2-~.)Gi°t(x, y )=O 
nj . 

- (KA+~, )Gex t ( .~ ,  y,  z ) = 0  

(5.1) 

,,j . ,,j O"8(x) 3i8(y)  x/vG,,,t(x, .~, 0)+( A2 (5.2) ' - X ) G i , , t ( x ,  y) = ~"x ~Jy 

The function G O iLs a perturbation of the defect element of the external operator, and the functions 
G "/are perturbations of the defect elements of the internal operator. Solutions of problems (5.1) and 
(5.2) can be obtained in the form of Fourier integrals. 

2 
k f l . l ( i ) [ , r ~ _ m ( X )  z 17('1; 4 -  ~)d'l; 

G;°t = --n_---_--;~'A l " " 0  t ' ' J ~  8~kd _ .  l(z)  

Gi°t = H°0)(xr) l(x) 

1('~) = V - (,~4 _ ~,)rn('~), re(X) = ~'1; 2 - ~ k 2 k ~  

(5.3) 
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Here the 5-function has been removed from f = v-1/2OG°ext/OzL:= 0 because the internal component 
Uin t is equal to f everywhere except at (0, 0). It is impossible to differentiate G o because the external 
component o f  G'0ex t would leave L2(R3+). We have 

G,,j 4-v 2 "+3 
int---- 4g bx"~yJ - .  ~ H(°l)(xr)e-"fx)z l(x)xdx (5.4) 

G!Zj 1 ~n+ j ~ HCol ) xdx 
,,t = 4n ~x"~-'--~J (xr)m(x)l-~ 

The values of the indices n and j are restricted by the requirement n + j ~< 2 corresponding to the 
condition G nj ~ L2(R~) • L2(R2). The defect indices of K ° are therefore equal to (7, 7). 

The domain of definition of the adjoint operator (K°) * consists of functions representable in the form 
of the following expansion 

u=u°+Z(  c°G°+n,y'cnjGnj+b°[ +,~,jbnJxnYJl~), " n!j! ' u°~D(K°) (5.5) 

Here Z is a smooth cut-off function. Computing the boundary form of the operator (K°) *, we obtain 

It is convenient to introduce the following vectors 

c=(k/(k20~)c O, cint) x, b=(k/(k~a/~)b °, bint) r 

In terms of c and b the self-adjointness condition is written in the form 

(5.6) 

b = Mc (5.7) 

where M is an arbitrary Hermitian matrix from {C + 00 }7. It depends on all the parameters of the 
problem, and so condition (5.7) must be rewritten in invariant terms, so that the haatrix in the condition 
depends only on the inhomogeneity (the size and shape of t2 and the nature of the boundary condition). 
To this end we obtain the asymptotic behaviour of the functions (5.5). From (5.3) and (5.4) it is convenient 
to select the defect elements of the external and internal operators 

4~K 0 K t JII o 

G 'd ~,z+j Ox,,OyJ(8-~(H(o')(~r'~r)-H(o')(i~/-~r')l[VU+g °° } 

Here gO and g00 are two-component functions 

2 o o  o _ vk" f H(l)txr)e_,,,(x)z xm(x) o o 
gext = 8nk 4 7** o , l(x) dx, glnt =Gint 

oo oo oo ~ ~ H(o,)(xr ) x dx 
gext = Gext' gint = - .  l('~) (• - ' ~ 4 )  

Computing asymptotic expansions for gO and gnj, one can establish that the sinjgular terms in the asymp- 
totic form of u are given by the defect elements Hext and Hint, while the gO and g~' only introduce 
corrections to the regular terms. Thus the asymptotic expansion of the internal component Umt is a repeat 
of the expansion (4.6), whereas the expansion of ue~t differs from (3.3) by the factor 
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uext = cOk 2 / (4nkgR)+/~0 + O( R) 

The asymptotic behaviour of gO and gn/= ~, +/gOO _/ax,,0y/have the form 
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(5.8) 

0 vk2 i xd¢ +o(l), gOt = k2 k2r2 
gext = - 4 ~k 4 m( x)l( x ) " ~  ~0 - 8 gk---'~- x)2 + o(r 2 ) 

O0 lO OI II 20 02 ~ + o(l) gext = ~f-Vl)o + o( l), = = o( l), = - 1)2 gext gext = gext gext = g©xt 

gi,l~ = 1o - l-Lr2 +°(r2), glnOt =12 x +°(r2), gi°lt = ' ~  Y+°(r2) 
4 2 

gi2n o =-12 + 314 x 2 +o(r2), g~lnt = .~xy+o(r2),  giOn2 =_12 + ~  y2 +o(r 2) 
8 

'~-'~i ,~l+j ,~l+j 

(5.9) 

When calculating the asymptotic forms (5.9) we used the property of Hankel functions 
H61)(-p) = -H62)~,), which enables us to rewrite the integrals for gO and g00 in the form of integrals 
along the semi-axis. One can then differentiate the integrands with respect to x andy the required number 
of times, and then put r = 0 and z = 0. 

Taking into account the asymptotic forms (5.9) we obtain 

f = b + G c  

v II G =  V t B+B'  

B = ik2" ~Tff°°-4 vk2 i xdx 
4gk~ ' v ~ m(x)l(x) 

k 
V=~-~o2{V o, O, O, a) 2, O, ~2} 

B ,  = 

10 0 0 - I 2 0 12 
0 12/2 0 0 0 0 
0 0 12/2 0 0 0 

-/2 0 0 314/8 0 14/8 
0 0 0 0 I414 0 

- I  2 0 0 14 / 8 0 3I 4 / 

(5.10) 

The matrix B is defined in Section 4. 
If the spectral pa~rameter ~. of the problem takes on negative values, the matrix G in (5.10) is Hermitian 

and condition (5.7) can be rewritten in the form 

c = Zf; Z = Z* = (5.11) 

The matrix Z parametrizes the self-adjoint extensions of the operator K °. The elementA corresponds 
to the problem of scattering by an inhomogeneity in an absolutely rigid screen, and the matrix A 
parametrizes a zero-radius potential in the isolated-plate problem. The vector a describes the additional 
interaction between the acoustic pressure and the bending displacements of the plate which appear as 
a result of the inhomogeneity. The parameterA and matrix A can be chosen by comparing the asymptotic 
characteristics of the field in the far zone computed in the rigid-plate and isolated-plate problems, with 
the characteristics of the field in the far zone computed in the rigid-plate and isolated-plate problems, 
with the characteristics associated with some zero-radius potential. 
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6. F O R M U L A T I O N  O F  T H E  P R O B L E M  O F  D I F F R A C T I O N  BY A 
C I R C U L A R  A P E R T U R E  

The problem of the diffraction of an acoustic wave by a thin elastic plate with a circular aperture of 
small radius consists of finding a solution of the Helmholtz equation (1.1) with boundary conditions 

(AZ-k4)~(x, y)+vu(x ,  y, 0 )=0 ,  ~(x, y)=bu/3zlz= o, r = C + y  ~- >R o (6.1) 

u(x, y, 0) = 0, r < R0 (6.2) 

The mechanical conditions at the edge of the aperture are fixed using the contact conditions 

( • )2  + 1 ~9 1 ~) 
(6.3) 

( 3  3 3 2 3 3 2 2 ) 
F~=  ~ + l  l 3 2 - a  3+t~ { I ,= ~ = 0  (6.4) 

r ~)r 2 r E c)r I- r-- T-  3r~O(p---- ~ r3 O(p2 

which specify the absence of bending moments and shear forces on the circle. 
The incident wave (1.3) excites a wave process in the system. The reflected field u r is calculated from 

formula (1.4). The problem consists of constructing the asymptotic form of the scattered field u s in the 
far zone. 

7. THE P R O B L E M  OF D I F F R A C T I O N  BY AN A B S O L U T E L Y  R I G I D  
PLATE 

We consider the following auxiliary problem of diffracti6n by a circular aperture in a completely rigid 
screen 

( A + k  2) u = 0 ,  z > 0  (7.1) 

~ul3zl:=o =0,  r>R0;  ul~=0=0, r < R  0 

The Meixner condition is imposed at the edges of the aperture. 
Let the incident field.be the plane wave (1.3). The total field u consists of a geometrical part u g formed 

by the incident wave u z and the wave 

u'= exp(ikr cos00 cosqo + ikz sin00) 

reflected by a screen without the aperture, and a diffraction correction (the scattered field) u s. The 
scattered field should satisfy the radiation condition. 

The literature on problem (7.1) is extensive and is reviewed, for example, in [9]. On the one hand, this problem 
allows of separation of variables in ellipsoidal coordinates and, consequently, its solution can be obtained in the 
form of infinite series containing elliptic functions [5]. On the other hand, asymptotic approaches have been applied 
to both the high- and low-frequency cases because of the complicated analysis involved in the exact solution of 
problem (7.1). 

We will use known results [9] for the leading term of the asymptotic form of u s in the zone 
(R ~ 0o) when R0 "~ 1 

u ~" -- -2kR 0 exp(ikR)/(~kR) 

This gives the scattering diagram 

= -2irc-2kRo (7.2) 

We then construct the solution of the scattering problem for a zero-radius potential. The scattered 
field is sought in the form 
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u-' = c°exp(ikR)/(4rtR) 

Calculating the ~tsymptotic behaviour 

u = c o / ( 4 ~ R ) + f  ° +o(1), R = 4 x 2  +y2 +z 2 

and requiring that the condition c o = Af ° must be satisfied, we obtain 

A u"= (ui(0, 0, 0)+ur(0, 0, 0)exp(ikR) 
1 - ikA / (4rQ 4xR 

In order to obtain a radiation pattern coinciding with (7.2) to leading order in R0, A should equal - 
8R0. 

8. THE PROBLEM OF DIFFRACTION BY AN ISOLATED PLATE 

Consider the problem of diffraction of flexural waves by an isolated plate. The flexural oscillations 
are described by the equation 

(A"-k~)~(,-, v)=O, ~>R0 

and satisfy boundary conditions (6.1) and (6.3) at the edge of the aperture. Suppose that the field 
in the plate is excited by the plane incident flexural wave ~ = exp(ikr cos (p). 

To construct the scattered field we separate the variables in the polar system of coordinates (r, ~). 
We shall seek the scattered field in the form of an expansion 

~"= j=~0 (° tJH)')(k°r)+~JH)l ' ( ik°r))c°sj~ (8.1) 

Using asymptotic: properties of Hankel functions we find 

~" = ~/2~ I (kor)  exp( ikor  - iu 1 4) V((p) + o(1 / (k0,')) 

which leads to the following formula for the radiation pattern 

W(g0)---I ~ (xj cosj(pexp - ~ -  
/=0 

The radiation pattern is therefore governed by the coefficients (~ of expansion (8.1). To determine 
these coefficients we substitute (8.1) into boundary conditions (6.1) and (6.2) and compare the expres- 
sions for the same functions of the polar angle ~/. After expanding the Hankel functions in terms of 
the small parameter k0R0 we obtain the leading terms of the asymptotic expansions of the coefficients 
ix0, (~1 and ct 3. The remaining coefficients are of lower order in k0R0 and their asymptotic forms are not 
required. We obtahl 

' 

W((p)-" In k°R0 ix 0 - 2  ~-1 4~_(koRo)2+o(k~R~)  2 + ~/'e - - - ' ~  cos~p + 
4 o(-~'-i) ) 

o + (l  - o ) ( 3 -  5 0 )  (8 .3)  
Z+ =: 1 - O 502 - 9 

We can now choose the matrix A parametrizing the zero-radius potential in the isolated-plate problem. 
To construct this matrix it is necessary to take account of the coordinate-independence of the solution, 
i.e. in the ease when the angle of incidence ~1 of the wave is equal to (P0, in formula (8.3) the angle (p 
should be replaced by 9 - 9o- 

We will seek a solution of the zero-radius potential scattering problem (see Section 4) in the form 
of a multiple expansion 
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~(s) = ~ C nj ~n+j 
n+j<3 8x,,~y j G(x, y, k o) (8.4) 

where Green's function G is given by (4.1). The coefficients c 'o are chosen from condition (4.7) on the 
scatterer. The v e c t o r  lint is given by the incident field ~i and the coefficients c nj 

lint = {~i, _ ~ i , - - ~ ' v "  ~ixx, ~ixv, ~:,.}(0, 0)+B(ko)c  

Calculating the asymptotic behaviour of Green's function as r ---> ** we obtain an expression for the 
radiation pattern 

i W = ~ {c oo + iko ct° sin tp + iko c°l cos tp - k2c 2° cos 2 tp - 

-k2o cl! cos~o sin~o-ko2c 02 sin 2 ~0} (8.5) 

Comparing expression (8.5) with (8.3), it is easy to determine the matrix A corresponding to the 
problem of scattering by a circular aperture in an isolated plate. In calculating the elements of A it is 
necessary to require them to be independent of the incident wave, i.e. of the angle of incidence ~ and 
the wave number k~. We obtain 

( 1 ( O - 2 )  
a22 =a33 =2 l ln  Ro +~-+ 

k z 

a44 = a66 = Z+Ro 2, a46 = a64 = z _ R  2 

The remaining elements are equal to zero. 
As was shown above, the matrix Z parametrizing zero-radius potentials in boundary-contact problems 

has a partitioned structure. The element A and the matrix A are given above. The vector a, which 
describes the additional interaction between the acoustic pressure and the bending displacements of 
the plate that appear because of the presence of the aperture, is equal to zero because in the classical 
formulation of the problem such an interaction does not occur in the conditions at the aperture 
(6.2)-(6.4) (u and ~ never appear in the conditions together). Thus the parameters in the zero-radius 
model for a circular aperture in an elastic plate are completely determined. 

9. S C A T T E R I N G  BY A Z E R O - R A D I U S  P O T E N T I A L  IN T H E  O R I G I N A L  
P R O B L E M  

We will formulate the problem of scattering by a matrix zero-radius, potential parametrized by the 
constructed matrix Z. If there is no inhomogeneity the incident wave u t (1.3) and the reflected wave u r 
(1.4) produce the field u 8. The scattering problem consists of calculating the function u s which satisfies 
conditions (1.1) and (1.2) everywhere except at the point (0, 0, 0) and which when summed with the 
specified function u g has the asymptotic form (4.6), and ~ = O(u g + uS)/OZ6=o has the asymptotic form 
(5.8) with coefficients satisfying (5.11) with 

Z = diag(~:A, A) 

The scattered field is sought in the form of the expansion 

0 0 ,,j ~,,j (9.1) U s = C Gex t + ~ c O'ex t 
n+j<3 

in which the functions G o and G "j (see Section 5) are taken with X = k 4. It is obvious that representation 
(9.1) satisfies Eq. (1.1) and condition (6.1). In order for condition (5.11) to be satisfied we use the 
arbitrariness in the choice of  the coefficients c U and c hi. 

We consider a vector generated by coefficients of the asymptotic expansions uS and/)ug/Oz6=0 
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d = (d 0, a s)O, d 10, d 01 , d 20, d l i ,  d°2) ! 

where 

d°=  2-)~kko 2 11 +R(Oo)} 

d "j = ikv - ~  sin 0 o { R(O o) - l}(-ik cos (Po cos 0 o)n ( - ik  sin ~Po cos 0 o)j 

As a result condition (5.11) is rewritten in the form 

d + Gc = diag(r.A, A) c (9.2) 

where the matrix G is given by the second formula in (5.10). 
Solving system (9.2) we determine the scattered field uSext. To construct the asymptotic form of the 

scattered field in the case of an aperture of small radius (R0 -* 0) in a thin plate we obtain the asymptotic 
form of the matrix G. For a thin plate the roots of the dispersion equation 

l ( ' o  = 0 (9.3) 

are approximately 

Xj = vl/Sexp{(2xi/5) j} ,  o ~ j ~ 4 (9.4) 

Using the asymptotic forms (9.4) we calculate the integrals contained in G. To do this we note that 
by introducing a new variable of  integration t = (x 2 - k2) v2 one can reduce the integrals to the form 
of integrals of ratkmal functions of  polynomials, which can be explicitly expressed in terms of the roots 
of the dispersion equation. Note that since the dispersion equation reduces to an algebraic equation of 
degree 5, its roots, and consequently, the integrals, can only be computed asymptotically. We finally 
obtain 

k2v 115 ctg(~ / 5) k tg(g / 10) 
Goo = 20ko4 , Goo = GOl = 10,X~ko2vi#lO 

k ctg(lt / 10) v -its 
G4° = G°4 = (760 = G°6 = 20%[2ko2V 3t10, Gll = 10cos0t / 10) 

In(v I/s 12)+yE-I 
Gl4 = G41 = Gi6 = G61 = 4/~ 

~- In(v/~/2)-Y~ 
G22 = G33 = 4it 

2 3v ~ 
G44 = ~G~ 5 = (766 = 3G46 = 3G~ = -]~0cos(rc / 10) 

Solving system (19.2) we find the asymptotic forms of the expansion coefficients of (9.1) 

8/~k 2 
c o = t-~(~--'16k°S Rola, o sinO0, c ° ° - c  ° l -  = c  tl =0,  cl° = - - ~ - I ,  tl sin O0 cosO0 

k3R 2 k3R 2 
c 2° -- - 2X_)s in  Oo c o :  c °2 -- sin Oo c o :  Oo 

)-i 
I . t o = l + ~ ' v  r-octg'3", l i l= t ln~.~ 'vJ~Ro)+TE+ 

o - 2  

We then find the asymptotic form of the scattered field in the far zone. Computing integrals (5,3) 
and (5.4) by the stationary-phase method, it can be shown that the scattered field for large R is the sum 
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of spherical waves (the contribution of the stationary-phase point) 

Usp h ---~-~-exp lkR--~ Itl/sph{,'00, ~00, O,  q)) 

and a surface wave (the residue at the pole x = x0) 

2 ~ -  f "~ ( ~ ' ~ .  in 2 k 2 W 0 ~o) 

The radiation patterns of the spherical and surface waves are given by the formulae 

2 ktpl 2i (k4k ~e kR0[t0 sin Osin d ° + ~ - - - ~ s i n  Osin 00 COS ~ COS 1) 0 COS ~0 -I- 

+ ~__ (kR0)2 ~ sin 0 sin 00 cos 2 0 cos 2 00 (X+ - 2X_) cos 2 q~ - Z- sin 2 tp) (9.5) 

Wsur f 4 k 4 kR0[t0sinO ° 4 k 2 --" 5n v4A - 5 v ' ~  -~tl s inO°c°sO°c°stP-  

2 k (kRo)2 t~ sin O o cos 20  cos 20  o ((X+ - 2X-) c°s2 tp- X- sin2 tp) (9.6) 
5 v ~ 

When deriving formulae (9.5) and (9.6) we used the fact that the plate is thin, which enabled us to 
use the asymptotic form of the root r0 of the dispersion equation. The formulae derived are also 
asymptotic with respect to the small aperture radius, because modelling the aperture by a zero-radius 
potential is only valid when R0 ~ 1. 

The pattern ~F s h is symmetric with respect to the angle of incidence and observation, and both • • P 
diagrams satisfy the optical theorem.t These properties follow from the self-adjointness of the operator 
and show that the point model for a small aperture is mathematically well-posed. 

The proof for the asymptotic expansions of the diagrams obtained for the spherical and surface waves 
is not given in this paper, i.e. the validity of the zero-radius models is not proved. However, the procedure 
for constructing a composite model out of models for the external and internal components can be 
justified in a number of cases by comparing the field in the model problem with the asymptotic forms 
constructed by classical methods. This comparison, performed for the case of a short rectilinear crack 
in an elastic plate, demonstrated the validity of the method. 

10. C O N C L U S I O N  

Our approach to the construction of leading terms in the asymptotic expansion of a field scattered 
by an inhomogeneity has enabled us to find the asymptotic forms of the field in a rather complicated 
boundary-contact problem without having to perform difficult calculations. To obtain these asymptotic 
forms it was only necessary to find the extension parameters in two auxiliary problems. In the case under 
consideration these problems were explicitly solvable, and their asymptotic investigation turned out to 
be elementary. In more complex situations, such as for an aperture of irregular form, the variables in 
the external and internal problems are not separable, but the well-developed method of matched 
asymptotic expansions can be used to deal with these problems [11]. 

An important property of the model is that the nurnberA and the matrix A depend only on the radius 
of the aperture and do not depend on the properties of the acoustic medium and the plate. The medium 
and plate properties are taken into account through a Green's function problem without the 

tANDRONOV, I. V., Low-frequency asymptotic forms in boundary-contact problems in mathematical physics and symmetric- 
operator extension theory. Candidate dissertation, Leningrad State University. 
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inhomogeneity. All this indicates that the zero-radius model should be valid in the case of a smoothly 
inhomogeneous au)ustic medium and also in the case of a curved plate. 

In the above the operator extension was performed without leaving L2. To obtain more exact models 
described by matrices Z of higher dimensions which would enable one to obtain a larger number of 
terms in the asymptotic expansions of the fields, the procedure can be extended to the case of operators 
extended in spaces larger than L2. 

R E F E R E N C E S  

1. BEREZIN E A. and FADDEYEV L D., A remark on Schr6dinger's equation with a singular potential. Dokl. Akad. Nauk 
SSSR 137, 5, 1011-1014, 1961. 

2. DEMKOV Yn. N. and OSTROVSKII V. N., The Zero-radius Potential Method in Atomic Physics. Izd. Len. Gos. Univ., 
Leningrad, 1975. 

3. PAVLOV B. S. and POPOV I. Yu., A model of diffraction by an infinitely thin slit and expansion theory. Vesta. Len. Gos. 
Univ. 19, 36--44, 19~. 

4. BELINSKII B. E, Integral equations in steady problems of short-wave diffraction by linear obstacles. Zh. Vych. Mat. Mat. 
F/z. 13, 2, 373-384, 1973. 

5. KOMAROV I. V., PONOMAREV L. I. and SLAV'YANOV S. Yu., Spheroidal and Coulomb-spheroidal Functions. Nauka, 
Moscow, 1976. 

6. ANDRONOV I. V. and BELINSKII B. E, Energy flows in the neighbourhood of the crack tip in a flexurally oscillating plate. 
Izv. AkacL Nauk SSSR, MTT 3, 184-187, 1990. 

7. KARPESHINA Yu. E. and PAVLOV B. S., Zero-radius interaction for the biharmonic and polyharmonie equations. Mat. 
Zametk/40, 1, 49-59, 1986. 

8. SMIRNOV V. I.,A Course of Higher Mathematics, Vol. 5. Mir, Moscow, 1964. 
9. HONL H., MAUE A. and WESTPFAL K., Theory of Diffraction. Mir, Moscow, 1964. 

I0. KOUZOV D. E, Di2~action of a plane hydro-acoustic wave by a crack in an elastic plate. Pr/kL Mat. Mekh. 27, 6, 1037-1043, 
1963. 

11. IEIN A. M., Consistency of the Asymptotic Expansions of  the Solutions of Boundary-value Problems. Nauka, Moscow, 1989. 

Trans/ated by R.L.Z. 


